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Abstract. In 1640, Pierre de Fermat sent a letter to Bernard Frénicle de Bessy claiming
that that there are no four or more rational squares in a nontrivial arithmetic progression;
this statement was shown in a posthumous work by Leonhard Euler in 1780. In 1823,
Adrien-Marie Legendre showed that there are no three or more rational cubes in a nontrivial
arithmetic progression. A modern proof of either claim reduces to showing that certain
elliptic curves have no rational points other than torsion.

A 2009 paper by Enrique González-Jiménez and Jörn Steuding [4], extended by a 2010
paper by Alexander Diaz, Zachary Flores, and Markus Vasquez [1], discussed a generaliza-
tion by looking at four squares in an arithmetic progression over quadratic extensions of the
rational numbers. Similarly, a 2010 paper by Enrique González-Jiménez [3] discussed a gen-
eralization by looking at three cubes in an arithmetic progression over quadratic extensions
of the rational numbers. In this project, we give explicit examples of four squares and three
cubes in arithmetic progressions, and recast many ideas by performing a complete 2-descent
of quadratic twists of certain elliptic curves.

1. Introduction

An m-term arithmetic progression is a collection of rational numbers {n1, n2, . . . , nm} such
that there is a common difference d = ni+1−ni. Examples of non-constant 3-term arithmetic
progressions are {−1, 0, 1} and {1, 25, 49}, where the common differences are d = 1 and d =
24, respectively. In fact, there infinitely many 3-term arithmetic progressions whose terms
are perfect squares: consider for example the set {(x2−2xz−z2)2, (x2+z2)2, (x2+2xz−z2)2}
for any rational numbers x and z. In 1640, Pierre de Fermat sent a letter to Bernard Frenicle
de Bessy claiming that there are no four or more rational squares in a nontrivial arithmetic
progression; this statement was shown in a posthumous work by Leonhard Euler in 1780.
Indeed, each 4-term arithmetic progression of perfect squares corresponds to a rational point
(x : y : z) on the elliptical curve E : y2 = x3 +5x2 +4x, and one shows that E(Q) ' Z2×Z4

consists of finitely many rational points. A paper by Enrique González-Jiménez and Jörn
Steuding [4] considered four squares in an arithmetic progression over quadratic extensions
of the rational numbers. For example, one can use those results to construct the arithmetic
progression

(1)
{

(9− 5
√

6)2, (15−
√

6)2, (15 +
√

6)2, (9 + 5
√

6)2
}
.

Similar arithmetic progressions have also been studied. There are only finitely many 3-
term arithmetic progressions whose terms are perfect cubes: {−1, 0, 1} is one. In 1823,
Adrien-Marie Legendre showed that there are no four or more rational cubes in a nontrivial
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arithmetic progression. Indeed, each 3-term arithmetic progressions of perfect cubes corre-
sponds to a rational point (x : y : z) on the elliptic curve E : y2 = x3 − 27, and one shows
that E(Q) ' Z2 consist of finitely many rational points. A 2010 paper by Enrique González-
Jiménez [3] considered three cubes in an arithmetic progression over the same quadratic
extensions. One can use those results to construct the arithmetic progression.

(2)
{

(4− 21
√

2)3, 223, (4 + 21
√

2)3
}
.

In this project, we seek to give explicit examples of four squares in arithmetic progressions
as well as three cubes in arithmetic progression, and recast many ideas by performing a
complete 2-descent of quadratic twists of certain elliptic curves. This extends a 2010 paper
Alexander Diaz, Zachary Flores, and Markus Vasquez [1].

2. Elliptic Curves

We begin with a result in order to motivate a definition.

Proposition 1. Consider the curve E : y2 + a1 x y + a3 y = x3 + a2 x
2 + a4 x+ a6. Using a

substitution,

(3)
X = x+

a21 + 4 a2
12

Y = y +
a1
2
x+

a3
2

⇐⇒
x = X − a21 + 4 a2

12

y = Y − a1
2
X +

a31 + 4a1 a2 − 12 a3
24

we find a curve in the form Y 2 = X3 + AX +B, where

(4)

A =
24 (a1 a3 + 2 a4)− (a21 + 4 a2)

2

48

B =
216 (a23 + 4 a6)− 36 (a21 + 4 a2) (a1 a3 + 2 a4) + (a21 + 4 a2)

864

This is a nonsingular curve, i.e., there is a well-defined tangent lined at every point on the
curve, if and only if 4A3 + 27B2 6= 0.

A nonsingular curve as in the proposition above is called an elliptic curve. It can be defined
over any field K, such as K = Q, the rational numbers, or K = Q(

√
D), a quadratic

extension thereof. We say that the K-rational points are those projective points (x : y : z)
on the curve whose coordinates x, y, and z belong to K. To this end, we denote the set
(5)

E(K) =

{
(x : y : z) ∈ P2(K)

∣∣∣∣ y2 z + a1 x y z + a3 y z
2 = x3 + a2 x

2 z + a4 x z
2 + a6 z

3

}
.

The idea behind considering nonsingular curves is we can draw lines – including tangent
lines – to generate several points from a few known ones. If P and Q are K-rational points
on an elliptic curve E, draw a line through them. If P = Q, then draw the line tangent to
the curve at P ; this line is well-defined because the gradient exists at all points on E. This
line will intersect the curve as a third K-rational point, say P ∗Q. If the line is parallel to the
y-axis, we define the third point as the point “at infinity” which we denote by O = (0 : 1 : 0).
This process is known as the chord-tangent method.
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Theorem 2. Denote K ⊆ C denote a field. Consider the elliptic curve

(6) E : y2 + a1 x y + a3 y = x3 + a2 x
2 + a4 x+ a6,

where ai ∈ K. Let ∗ denote the composition law which takes two K-rational points P and Q
and computes the point of intersection P ∗Q of the projective curve E and the line through
P and Q. Define the composition law P ⊕ Q = (P ∗ Q) ∗ O. This turns

(
E(K),⊕

)
into

an abelian group where the identity is O = (0 : 1 : 0) and the inverse of P = (x : y : z) is
[−1]P = P ∗ O = (x : −y − a1 x− a3 z : z).

We will be interested in those elliptic curves defined over the field of rational numbers,
that is, nonsingular curves in the form E : y2 + a1 x y + a3 y = x3 + a2 x

2 + a4 x+ a6, where
ai ∈ Q. Much is known about the abelian group E(Q).

Theorem 3 (Louis J. Mordell, [7]). Let E be an elliptic curve defined over Q. Then E(Q) is
a finitely generated abelian group, that is, there exists a finite set {P1, P2, . . . , Pt} ⊆ E(Q)
such that each P ∈ E(Q) can be expressed as the linear combination

(7) P = [m1]P1 ⊕ [m2]P2 ⊕ · · · ⊕ [mt]Pt

for some integers mi ∈ Z. (Here, [m]P = P ⊕ P ⊕ · · · ⊕ P is P added to itself m times.) In
particular,

(8) E(Q) ' E(Q)tors × Zr

for some finite group E(Q)tors and for some nonnegative integer r.

We call E(Q)tors the torsion subgroup of E(Q). It consists of those elements P ∈ E(Q)
such that [m]P = O for some positive integer m. The nonnegative integer r is called the
rank of the elliptic curve E. We will often denote r = rankE(Q). Observe that r > 0 if and
only if there exists a rational point (x : y : z) 6∈ E(Q)tors.

Theorem 4 (Barry Mazur, [6]). Let E be a rational elliptic curve defined over Q, and let
E(Q)tors denote the torsion subgroup of E(Q). This finite group can only be one of fifteen
types:

(9) E(Q)tors '

{
ZN for N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12;

Z2 × Z2N for N = 1, 2, 3, 4.

(Here ZN denotes the cyclic group of order N .) Moreover, each of these possibilities does
occur, that is, given one of these fifteen finite groups T , there exists an elliptic curve E
defined over Q such that E(Q)tors ' T .

As an example, the elliptic curve E : y2 = x3 + 5x2 + 4x has torsion subgroup

(10) E(Q)tors =

{
(0 : 1 : 0), (0 : 0 : 1), (−2 : +2 : 1), (−2 : −2 : 1),

(−1 : 0 : 1), (−4 : 0 : 1), (2 : +6 : 1), (2 : −6 : 1)

}
' Z2 × Z4;

whereas the elliptic curve E : y2 = x3 − 27 has torsion subgroup

(11) E(Q)tors =
{

(0 : 1 : 0), (3 : 0 : 1)
}
' Z2.
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3. Squares in Arithmetic Progressions

An arithmetic progression over a field K is a collection of numbers {n1, n2, . . . , nm} ⊆ K
such that there is a common difference d = ni+1−ni. There infinitely many 3-term arithmetic
progressions whose terms are perfect squares: consider for example the set {(x2 − 2xz −
z2)2, (x2 + z2)2, (x2 + 2xz − z2)2} for any x, z ∈ K. In 1640, Pierre de Fermat sent a letter
to Bernard Frenicle de Bessy claiming that there are no four or more squares in a nontrivial
arithmetic progression over K = Q. We review a modern proof of this statement.

Theorem 5 (Enrique González-Jiménez and Jörn Steuding, [4]). For each nonnegative in-
teger D, denote the elliptic curves

(12)
X0(24) : y2 = x3 + 5x2 + 4x

X
(D)
0 (24) : y2 = x3 + 5Dx2 + 4D2 x

There exists a nonconstant arithmetic progression {n1, n2, n3, n4} of four squares over Q(
√
D)

if and only if rankX
(D)
0 (24)

(
Q
)
> 0. In this case, there are infinitely many arithmetic pro-

gressions of four squares over Q(
√
D).

Proof. This is the content of [4, Corollary 2], although we give a slightly expanded proof.
First assume that we have a nonconstant 4-term arithmetic progression of squares {n1, n2, n3, n4} ⊆
K for the quadratic field K = Q(

√
D). We will show that rankX

(D)
0 (24)

(
Q
)
> 0. Define

the numbers

(13)

x = 2
(√

n1 − 3
√
n2 − 3

√
n3 +

√
n4

)
y = 6

(√
n1 −

√
n2 +

√
n3 −

√
n4

)
z =
√
n1 + 3

√
n2 + 3

√
n3 +

√
n4

Using the equations n2− n1 = n3− n2, it is easy to verify that y2 z = x3 + 5x2 z+ 4x z2. In
other words, (x : y : z) ∈ X0(24)

(
K
)
. One checks that this elliptic curve has at least eight

torsion elements:

(14) X0(24)
(
K
)
tors
⊇ X0(24)

(
Q)tors =

{
(0 : 1 : 0), (0 : 0 : 1), (−2 : ±2 : 1),

(−1 : 0 : 1), (−4 : 0 : 1), (2 : ±6 : 1)

}
' Z2 × Z4.

Using Table 1, we see that these points correspond to the constant arithmetic progressions
of squares (n1 : n2 : n3 : n4) = (1 : 1 : 1 : 1). Note that X0(24) : y2 = x (x + M) (x + N)
where M = 12 and N = 22. Soonhak Kwon proved in [5, Theorem 1(iii)] that

(15) X0(24)
(
Q(
√
D)
)
tors

= X0(24)
(
Q)tors ' Z2 × Z4.

We conclude that if (n1 : n2 : n3 : n4) 6= (1 : 1 : 1 : 1) is a nonconstant arithmetic progression

of squares then (x : y : z) 6∈ X0(24)
(
Q(
√
D)
)
tors

is not a point of finite order. Hence

rankX0(24)
(
Q(
√
D)
)
> 0. Following Joe Silverman’s [8, Exercise 10.16], we have the result

(16) rankX0(24)
(
Q(
√
D)
)

= rankX0(24)
(
Q
)

+ rankX
(D)
0 (24)

(
Q
)
.

We will see later that rankX0(24)
(
Q
)

= 0, so we conclude that rankX
(D)
0 (24)

(
Q
)
> 0.

Conversely, assume that rankX
(D)
0 (24)

(
Q
)
> 0. We will show that there exists a non-

constant 4-term arithmetic progression of squares {n1, n2, n3, n4} ⊆ K for the quadratic
4



Table 1. Q-Rational Points on X0(24) : y2 z = x3 + 5x2 z + 4x z2

(
√
n1 :
√
n2 :
√
n3 :
√
n4) (x : y : z)

(−1 : −1 : +1 : +1) (0 : 1 : 0)
(−1 : +1 : −1 : +1) (0 : 0 : 1)
(−1 : −1 : −1 : +1) (−2 : +2 : 1)
(−1 : +1 : +1 : +1) (−2 : −2 : 1)
(+1 : +1 : +1 : +1) (−1 : 0 : 1)
(+1 : −1 : −1 : +1) (−4 : 0 : 1)
(+1 : +1 : −1 : +1) (2 : +6 : 1)
(+1 : −1 : +1 : +1) (2 : −6 : 1)

field K = Q(
√
D). Choose a rational point P = (x : y : z) ∈ X(D)

0 (24)
(
Q
)

which is not in

X0(24)
(
Q)tors or X

(D)
0 (24)

(
Q)tors; such a point exists because X

(D)
0 (24)

(
Q
)

contains infinitely
many rational points. Define the numbers

(17)

n1 =
(
3Dx (x+ 2D z) +

√
D y (x− 2D z)

)2
n2 =

(
Dx (x− 2D z) +

√
D y (x+ 2D z)

)2
n3 =

(
Dx (x− 2D z)−

√
D y (x+ 2D z)

)2
n4 =

(
3Dx (x+ 2D z)−

√
D y (x− 2D z)

)2
This is a nonconstant arithmetic progression of squares over K = Q(

√
D). Since the rational

point P = (x : y : z) is a point of infinite order, each multiple (x′ : y′ : z′) = [m]P gives rise
to an arithmetic progression {n′1, n′2, n′3, n′4} of four squares. �

For an example, consider the case when D = 6. Then the rational point (x : y : z) =

(−8 : −16 : 1) on the elliptic curve X
(6)
0 (24) is not a point of finite order; hence X

(6)
0 (24) has

positive rank. We find the following arithmetic progression over Q(
√

6):

(18)
{
n1, n2, n3, n4

}
=
{

(9− 5
√

6)2, (15−
√

6)2, (15 +
√

6)2, (9 + 5
√

6)2)
}
.

In fact, there are infinitely many arithmetic progressions of four squares over Q(
√

6). With
the information we have above, we want to find an answer to the following question:

For which D does X
(D)
0 (24) : y2 = x3 + 5Dx2 + 4D2 x have positive rank?

4. Cubes in Arithmetic Progressions

We may generalize the results in the previous section to arithmetic progressions of cubes.
In 1823, Adrien-Marie Legendre showed that there are no three or more rational cubes in a
nonconstant, nontrivial arithmetic progression – where we consider (n1 : n2 : n3) = (1 : 1 : 1)
to be the constant progression and (n1 : n2 : n3) = (−1 : 0 : +1) to be the trivial progression.
We review a modern proof of this statement.
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Theorem 6 (Enrique González-Jiménez, [2]). For each nonnegative integer D such that√
−3D 6∈ Q, denote the elliptic curves

(19)
X0(36) : y2 = x3 − 27

X
(D)
0 (36) : y2 = x3 − 27D3

There exists a nonconstant, nontrivial arithmetic progression {n1, n2, n3} of three cubes over

Q(
√
D) if and only if rankX

(D)
0 (36)

(
Q
)
> 0. In this case, there are infinitely many arith-

metic progressions of three cubes over Q(
√
D).

Proof. This is the content of [2, Theorem 7], although we give a slightly expanded proof.
First assume that we have a nonconstant, nontrivial 3-term arithmetic progression of squares

{n1, n2, n3} ⊆ K for the quadratic field K = Q(
√
D). We will show that rankX

(D)
0 (36)

(
Q
)
>

0. Define the numbers

(20)

x = −6
(

3
√
n1 + 3

√
n2 + 3

√
n3

) (
3
√
n1 − 2 3

√
n2 + 3

√
n3

)
y = −27

(
3
√
n1

2 − 3
√
n3

2)
z =

(
3
√
n1 − 2 3

√
n2 + 3

√
n3

)2
Using the equations n2 − n1 = n3 − n2, it is easy to verify that y2 z = x3 − 27 z3. In other
words, (x : y : z) ∈ X0(36)

(
K
)
. One checks that this elliptic curve has at least two torsion

elements:

(21) X0(36)
(
K
)
tors
⊇ X0(36)

(
Q)tors =

{
(0 : 1 : 0), (3 : 0 : 1)

}
' Z2.

Using Table 2, we see that these points correspond either to the constant arithmetic pro-
gressions of cubes (n1 : n2 : n3) = (1 : 1 : 1) or the trivial arithmetic progressions of cubes

(n1 : n2 : n3) = (−1 : 0 : 1). Note that X
(D)
0 (36) : y2 = x3 +M where M = −27D3.

(22) X0(36)
(
Q(
√
D)
)
tors

= X0(36)
(
Q)tors ' Z2.

Given a nonzero rational number D, we say that X
(D)
0 (36) : y2z = x3 − 27D3z3 has a

nontrivial rational point (x : y : z). We then have an arithmetic progression of three cubes

(n1, n2, n3, n4) over Q(
√
D) that satisfy the following:

n1 = ((x− 3Dz)2 −
√
Dyz)3

n2 = ((x− 3Dz)(x+ 6Dz))3

n3 = ((x− 3Dz)2 +
√
Dyz)3

For an example, consider the case when D = 2, then the rational point (x : y : z) = (10 :

28 : 1) is on the curve X
(D)
0 (36). Using this case, we get the following progression

(23) {n1, n2, n3} = {(4− 21
√

2)3, 223, (4 + 21
√

2)3)}.

�

Lemma 1. X0(36)(Q(
√
D))tors = X0(36)(Q)tors, when D 6= −3.
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Table 2. Q-Rational Points on X0(36) : y2 z = x3 − 27 z3

(
√
n1 :
√
n2 :
√
n3) (x : y : z)

(+1 : 1 : +1) (0 : 1 : 0)
(−1 : 0 : +1) (0 : 0 : 1)

Proof. ”Kamienny proved that the only primes possibly dividing the order of the torsion
subgroup of an elliptic curve over a quadratic field are 2,3,5,7,11, and 13. Then it is enough
to compute for which quadratic fields the elliptic curve E : y2 = x3 − 27 [Notice: this is the
same as our X0(36)] has a torsion point of order n ∈ (2, 3, 4, 5, 7, 11, 13). Note that we need
to check n = 4 since there is a point or order 2 defined over Q.

To achieve this we look for the irreducible factors of degree one or two of the nth division
polynomial ofE [OurX0(36)] in Z[x]. The set of these factors is x, x− 3, x2 + 3x+ 9, x2 − 6x− 18.

Therefore the only possible values D such that E(Q(
√
D))tors [Our X0(36)(Q(

√
D))tors] in-

creases with respect E(Q)tors [our X0(36)(Q)tors] are D = 3 and D = −3. A straightforward
computation shows that E(Q(

√
3))torsCongZ/2Z and E(Q(

√
−3))torsCongZ/2Z ⊕ Z/6Z.”

[Quoted from Gonzalez-Jimenez paper]. �

From this we can conclude that points that we find for the progressions of three cubes are
not torsion points, and thus rankX0(36)(Q(

√
D)) > 0.

Motivating Question: With the information we have above, we want to find an answer to

the following question, ”For which D is the rank X
(D)
0 (36)(Q) > 0?”

5. Elimination of points from the image for squares

As we have previously noted, there is a motivation for eliminating points from the image
of δ and δ′ for a given D = mp.

In order to show a point d is not in the image δ, it will suffice to show that there are no
rational solutions to:

(24) v′2 = d− 18Du′2 − 27D2

d
u′4

If we let v′ =
v

z
and u′ =

u

z
such that gcd(u, v, z) = 1, and multiply through by z4, we

get:

(25) v2z2 = dz4 − 18Du2z2 − 27D2

d
u4

so it will also suffice to show there are no integer solutions to this equation.
Likewise, in order to show a point d is not in the image of δ′, it will suffice to show that
there are no rational solutions to:

(26) v2 = d+ 9Du2 +
27D2

d
u4
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If we let v′ =
v

z
and u′ =

u

z
such that gcd(u, v, z) = 1, and multiply through by z4, we

get:

(27) v2z2 = dz4 − 18Du2z2 − 27D2

d
u4

so it will also suffice to show there are no integer solutions to this equation.
Additionally, we know the image of the two 2-torsion points for both δ and δ′. Suppose

we form co-sets with respect to these points. Since the images of δ and δ′ are each groups, if
we can show a point is not in the image, the other point in the corresponding co-set is not
in the image.

5.1. Checking for Real Solutions.

Lemma 1. If d < 0 then there is no rational solution to v2 = d+ 9Du2 +
27D2

d
u4

Proof. Let f(u) = d+ 9Du2 +
27D2

d
u4.

Suppose f(u) = 0. Let us use the quadratic equation with respect to u2. The discriminant
∆ is:

(28) ∆ = (9D)2 − 4(
27D2

d
)(d)

(29) ∆ = 81D2 − 108D2

(30) ∆ = (81− 108)D2

(31) ∆ = −27D2

(32) ∆ < 0

Thus f(u) is never 0. Since f(u) is a polynomial it is a continuous function, and thus by
the Intermediate Value Theorem, f(a)f(b) > 0 for all a and b.

(33) f(0) = d+ 0 + 0 = d

By our initial assumption d < 0 so f(0) < 0

(34) f(u)f(0) > 0 for all u

(35) f(u) < 0 for all u

(36) v2 < 0

But this impossible over the real numbers. Thus there are no real solutions to v2 =

d+ 9Du2 +
27D2

d
u4 and thus there are no rational solutions �
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5.2. Modulo p Rules.

Lemma 5.1. There are no rational solutions to either of the integer equations if u,v, or z
is 0.

Proof. If z is 0, the denominators of u′ and v′ are 0 which is impossible.
If u = 0, then u′ = 0. This implies the equations are v′2 = d which have no rational

solution since d is a square free number.
If v = 0, then v′ = 0. This implies the equations are:

(37) 0 = d− 18Du′2 − 27D2

d
u′4

(38) 0 = d+ 9Du′2 +
27D2

d
u′4

Using the quadratic equation, we get the discriminants are:

(39) ∆ = (−18D)2 − 4(−27D2

d
)(d) = 324D2 + 108D2 = 432D2 = 3(12D)2

(40) ∆ = (9D)2 − 4(
27D2

d
)(d) = 81D2 − 108D2 = −27D2 = −3(3D)2

Since neither of these discriminants are perfect squares, there are no rational solutions. �

Each of the integer equations can be written as the sum of four terms. Each of these terms
is never 0 since u, v, z, d,D 6= 0. Suppose we have an integer k and define the k-order of a
number X as the integer n such that kn | X but kn+1NmidX.

Lemma 5.2. If one of the terms in the integer equations has a lower k-order than the other
three terms, there are no solutions.

Proof. Suppose the minimal k-order of the four terms is n. Then let us divide the equation
through by kn. Then if we look at the integer equation mod k, we will get an equation of
the form X ≡ 0(mod k) where kNmidX and X 6= 0. This of course has no solutions mod k
and thus the entire equation has no integer solution. �

Lemma 5.3. Let D = mp and suppose p | d. If (3
p
) = −1 then there are no solutions to

v2z2 = dz4 − 18Du2z2 − 27D2

d
u4

Proof. Let us look at the p-order of the four terms. Let U , V , and Z be the p-orders of u,
v, and z, respectively. So the orders are, respectively:

(41) (2V + 2Z)(1 + 4Z)(1 + 2U + 2Z)(1 + 4U)

(2V +2Z) cannot attain the minimal value because then the minimal value would be even
and it would be the only term that could attain the minimal value, thus no solutions.

So the minimal value of the p-order is attained by at least two of the terms on the right.
However, if any two of the terms have the same p-order, U = Z, and thus all three of the
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terms have the same p-order. So divide the equation through by p(1 + 2U + 2Z) and take it
mod p. Let d = d̄p, D = D̄p, ū be the p-free part of u, and z̄ be the p-free part of z.

(42) 0 ≡ d̄z̄4 − 18D̄ū2z̄2 − 27D̄2

d̄
ū4 (mod p)

Since we are working mod a prime. We can divide through by d̄z̄4.

(43) 0 ≡ 1− 18
D̄

d̄

ū2

z̄2
− 27

D̄2

d̄2
ū4

z̄4
(mod p)

Let x =
D̄

d̄

ū2

z̄2

(44) 0 ≡ 1− 18x− 27x2 (mod p)

Since mod p is a finite field, usual algebra including the quadratic equation holds. In a
necessary condition for a solution is that the square root of the discriminant is defined.

(45) ∆ ≡ (−18)2 − 4(−27) ≡ 324 + 108 ≡ 432 ≡ 3(12)2 (mod p)

So
√

3 must be defined mod p which means that (3
p
) = 1. So if (3

p
) = −1, there are no

solutions. �

Lemma 5.4. Let D = mp and suppose p | d. If (−3
p

) = −1 then there are no solutions to

v2z2 = dz4 + 9Du2z2 +
27D2

d
u4

Proof. Because of the similarities between the two equations, the same proof as the one
above works to show that the equation has a solution only if the following has a solution:

(46) 0 ≡ 1 + 9x+ 27x2 (mod p)

Since mod p is a finite field, usual algebra including the quadratic equation holds. In a
necessary condition for a solution is that the square root of the discriminant is defined.

(47) ∆ ≡ (9)2 − 4(27) ≡ 81− 108 ≡ −27 ≡ −3(3)2 (mod p)

So
√
−3 must be defined mod p which means that (−3

p
) = 1. So if (−3

p
) = −1, there are

no solutions. �

Lemma 5.5. Let D = mp and suppose pNmidd. If (d
p
) = −1 and (−3d

p
) = −1 then there

are no solutions to v2z2 = dz4 − 18Du2z2 − 27D2

d
u4

Proof. Let us look at the p-order of the four terms. Let U , V , and Z be the p-orders of u,
v, and z, respectively. So the orders are, respectively:

(48) (2V + 2Z)(4Z)(1 + 2U + 2Z)(2 + 4U)
10



I. If the minimal value is odd, then only (1 + 2U + 2Z) attains the minimal value, which
is impossible.

II. If the minimal value is even but not divisible by four, then (2V + 2Z) and (2 + 4U)
attain the minimal value. Then let us divide the equation through by p2+4U and take it mod
p. Let D = D̄p and let ū, v̄, and z̄ be the p-free part of u, v, and z, respectively.

(49) v̄2z̄2 ≡ −27D̄2

d
ū4 (mod p)

(50)
v̄2z̄2d2

9D̄2ū4
≡ −3d (mod p)

(51) (
v̄z̄d

3D̄ū2
)2 ≡ −3d (mod p)

So it must be true that (−3d
p

) = 1

III. If the minimal value is divisible by four, then (2V + 2Z) and (4Z) attain the minimal
value. Then let us divide the equation through by p4Z and take it mod p. Let D = D̄p and
let ū, v̄, and z̄ be the p-free part of u, v, and z, respectively.

(52) v̄2z̄2 ≡ dz̄4 (mod p)

(53)
v̄2z̄2

z̄4
≡ d (mod p)

(54) (
v̄z̄

z̄2
)2 ≡ d (mod p)

So it must be true that (d
p
) = 1

In conclusion, either (−3d
p

) = 1 or (d
p
) = 1 if there is a solution. So if (d

p
) = −1 and

(−3d
p

) = −1 then there are no solutions �

5.3. Modulo 3 rules.

Lemma 5.6. Suppose 3Nmidd and 3 | D. If d ≡ −1 (mod 3) then there is no integer

solution to either v2z2 = dz4 − 18Du2z2 − 27D2

d
u4 or v2z2 = dz4 + 9Du2z2 +

27D2

d
u4.

Proof. Let us look at the 3-order of the four terms. Let U , V , and Z be the 3-orders of u, v,
and z, respectively. So the orders are, respectively:

(55) (2V + 2Z)(4Z)(3 + 2U + 2Z)(5 + 4U)

I. Suppose the minimal value is odd. Thus,

(56) 3 + 2U + 2Z = 5 + 4U

(57) 2Z = 2 + 2U

(58) 4Z = 4 + 4U
11



(59) 4Z < 5 + 4U

Which means that the minimal value isn’t actually odd.
II. If the minimal value is even, then (2V + 2Z) and (4Z) attain the minimal value. Then

let us divide the equation through by 34Z and take it mod 3. Let v̄ and z̄ be the 3-free part
of v and z, respectively.

(60) v̄2z̄2 ≡ dz̄4 (mod 3)

(61)
v̄2

z̄2
≡ d (mod 3)

(62) (
v̄

z̄
)2 ≡ d (mod 3)

So (d
3
) = 1 which means d ≡ 1 (mod 3).

In conclusion, if there is an integer solution to the one of the equations then d ≡ 1 (mod 3).
So if d ≡ −1 (mod 3), then there are not any integer solutions. �

Lemma 5.7. Suppose 3Nmidd and 3NmidD. If d ≡ −1 (mod 3) then there is no integer

solution to either v2z2 = dz4 − 18Du2z2 − 27D2

d
u4 or v2z2 = dz4 + 9Du2z2 +

27D2

d
u4.

Proof. Let us look at the 3-order of the four terms. Let U , V , and Z be the 3-orders of u, v,
and z, respectively. So the orders are, respectively:

(63) (2V + 2Z)(4Z)(2 + 2U + 2Z)(3 + 4U)

I. Suppose the minimal value is odd. Since only one term has odd 3-order, the minimal
value is attained by only one term which is impossible.

II. Suppose the minimal value is even and (2 + 2U + 2Z) is the minimal value. Then,

(64) 2 + 2U + 2Z < 3 + 4U

(65) 2Z < 1 + 2U

(66) 4Z < 1 + 2U + 2Z

(67) 4Z < 2 + 2U + 2Z

Which contradicts our initial assumption since (2 + 2U + 2Z) was the minimal value.
III.Suppose the minimal value is even and (2 + 2U + 2Z) is not the minimal value. So

then only (2V + 2Z) and (4Z) attain the minimal value. Then let us divide the equation
through by 34Z and take it mod 3. Let v̄ and z̄ be the 3-free part of v and z, respectively.

(68) v̄2z̄2 ≡ dz̄4 (mod 3)

(69)
v̄2

z̄2
≡ d (mod 3)

12



(70) (
v̄

z̄
)2 ≡ d (mod 3)

So (d
3
) = 1 which means d ≡ 1 (mod 3).

In conclusion, if there is an integer solution to the one of the equations then d ≡ 1 (mod 3).
So if d ≡ −1 (mod 3), then there are not any integer solutions.

�

5.4. Modulo 8 rules.

Lemma 5.8. Suppose 2 | d which implies 2 | D. Let d = 2d̄ and D = 2D̄. Then v2z2 =

dz4 − 18Du2z2 − 27D2

d
u4 has a solution only if d̄z4 − 18D̄ − 27D̄2

d̄
≡ 0 or 2 (mod 8).

Proof. Let us look at the 2-order of the four terms. Let U , V , and Z be the 2-orders of u, v,
and z, respectively. So the orders are, respectively:

(71) (2V + 2Z)(4Z + 1)(2U + 2Z + 2)(4U + 1)

I. Suppose the minimal value is even. Thus, 2V + 2Z = 2U + 2Z + 2.
If U ≤ Z, then 2V + 2Z ≥ 4U + 2 > 4U + 1 which contradicts the assumption
If Z ≤ U , then 2V + 2Z ≥ 4Z + 2 > 4Z + 1 which contradicts the assumption
II. Suppose the minimal value is odd. Then 4Z + 1 = 4U + 1 which implies Z = U . Then

let us divide the equation through by 24Z+1 and take it mod 8. Let ū and z̄ be the 2-free

part of u and z, respectively. And let v̄ =
v

22Z+2
.

(72) 2v̄2z̄2 ≡ d̄z̄4 − 18D̄ū2z̄2 − 27
27D̄2

d̄
ū4 (mod 8)

But all odd squares are 1 mod 8

(73) 2v̄2 ≡ d̄− 18D̄ − 27
27D̄2

d̄
(mod 8)

Also 2v̄ ≡ 0, 2 (mod 8)

So in conclusion, if there is a solution to the equation, then d̄z4 − 18D̄ − 27D̄2

d̄
≡

0 or 2 (mod 8) �

Lemma 5.9. Suppose 2 | d which implies 2 | D. Let d = 2d̄ and D = 2D̄. Then v2z2 =

dz4 + 9Du2z2 +
27D2

d
u4 has a solution only if d̄z4 + 9D̄ +

27D̄2

d̄
≡ 0 or 2 (mod 8).

Proof. Let us look at the 2-order of the four terms. Let U , V , and Z be the 2-orders of u, v,
and z, respectively. So the orders are, respectively:

(74) (2V + 2Z)(4Z + 1)(2U + 2Z + 1)(4U + 1)

I. Suppose the minimal value is even. Since only one term has even 2-order, this is
impossible.

II. Suppose the minimal value is odd.
13



If 4Z + 1 < 4U + 1, then Z < U so 4Z + 1 < 2U + 2Z + 1. Which cannot be because then
the minimal value is only attained by one term

If 4U + 1 > 4Z + 1, then U < Z so 4U + 1 < 2U + 2Z + 1. Which cannot be because then
the minimal value is only attained by one term

Thus it must be the case that 4Z + 1 = 4U + 1 which implies Z = U . Then let us divide
the equation through by 24Z+1 and take it mod 8. Let ū and z̄ be the 2-free part of u and

z, respectively. And let v̄ =
v

22Z+2
.

(75) 2v̄2z̄2 ≡ d̄z̄4 + 9D̄ū2z̄2 + 27
27D̄2

d̄
ū4 (mod 8)

But all odd squares are 1 mod 8

(76) 2v̄2 ≡ d̄+ 9D̄ + 27
27D̄2

d̄
(mod 8)

Also 2v̄ ≡ 0, 2 (mod 8)

So in conclusion, if there is a solution to the equation, then d̄z4+9D̄+
27D̄2

d̄
≡ 0 or 2 (mod 8)

�

Lemma 5.10. Suppose 2Nmidd but 2 | D. Let D = 2D̄. Then v2z2 = dz4+9Du2z2+
27D2

d
u4

has a solution only if one of the following holds.

(77) d+ 2 ∗ 9D̄ + 4 ∗ 27D̄2

d
≡ 1 (mod 8)

(78) d ≡ 1 (mod 8)

(79) 4 ∗ d+ 2 ∗ 9D̄ +
27D̄2

d
≡ 1 (mod 8)

(80)
27D̄2

d
≡ 1 (mod 8)

Proof. Let us look at the 2-order of the four terms. Let U , V , and Z be the 2-orders of u, v,
and z, respectively. So the orders are, respectively:

(81) (2V + 2Z)(4Z)(2U + 2Z + 1)(4U + 2)

I. Suppose the minimal 2-order is odd. Since there is only one term with odd 2-order, this
is impossible.

II. Suppose the minimal 2-order is divisible by 4. So the minimal 2-order is attained by
(2V + 2Z) and (4Z).

1. Suppose U = Z. Divide the equation through by 24Z and take it mod 8. Note all 2-free
squares are 1 mod 8.

(82) d+ 2 ∗ 9D̄ + 4 ∗ 27D̄2

d
≡ 1 (mod 8)
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2. Suppose U > Z. Divide the equation through by 24Z and take it mod 8. Note all 2-free
squares are 1 mod 8.

(83) d ≡ 1 (mod 8)

III. Suppose the minimal 2-order is even but not divisible by 4. So the minimal 2-order is
attained by (2V + 2Z) and (4U + 2).

1. Suppose Z = U + 1. Divide the equation through by 24U+2 and take it mod 8. Note all
2-free squares are 1 mod 8.

(84) 4 ∗ d+ 2 ∗ 9D̄ +
27D̄2

d
≡ 1 (mod 8)

2. Suppose Z > U + 1. Divide the equation through by 24U+2 and take it mod 8. Note all
2-free squares are 1 mod 8.

(85)
27D̄2

d
≡ 1 (mod 8)

In conclusion, we see that if the equation has a solution, one of the four conditions must
be satisfied. �

6. Results

After applying the previous lemmas to eliminate points from the images, we are left with
upper bounds for the size of the images. And we can use these to form an upper bound for

the rank. Here is the table for the upper bounds on the rank for X
(D)
0 (36). The columns

correspond to an m and the rows correspond to a p (mod 24)

1 2 3 6 -1 -2 -3 -6
1 2 3 2 2 2 2 2 3
5 0 1 0 0 0 0 0 1
7 1 1 1 0 1 0 1 1

11 1 1 1 2 1 2 1 1
13 2 1 2 2 2 2 2 1
17 0 1 0 0 0 0 0 1
19 1 1 1 2 1 2 1 1
23 1 1 1 2 1 2 1 1

In the previous table, we have found examples with ranks of the upper bound and if the
upper bound is 2 or 3, we have found examples with rank 2 less than the upper bound. All
these examples can be found by looking at the first ten primes except for the cases with rank
3. For these cases, if we let p = 2521 we get curves of rank 3.
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7. Computer Program

This following computer program is written in python. It uses the elimination theorems
to eliminate points from the image to gain an upper bound on the rank.

##############general functions

def squarefree(a):

if a==0: return 0

while (a%4 == 0): a /= 4

while (a%9 == 0): a /= 9

return a

def legendre(a,p): #assume a only has factors of -1, 2, and 3 and that p is prime > 3

a=squarefree(a)

if a==0: return 1

legendre = 1

if a<0 and p%4 == 3: legendre *= -1

if a%2==0 and p%8 in [3,5]: legendre *= -1

if a%3==0 and p%12 in [5,7]: legendre *= -1

return legendre

def floorLog2(imageCount):

for x in range(0,4):

if imageCount < 2**(x+1): return x

def initializeTorsionImageSquares(m): # initializes the four points we know are in the image for the squares case

image0=[ [1,0] , [1,0] ]

image1=[ [1,0] , [m,1] ]

image2=[ [-m,1] , [-3,0] ]

image3=[ [-m,1] , [squarefree(-3*m),1] ]

return [image0,image1,image2,image3]

def initializeDs(m,include_2_in_d,include_3_in_d): #returns a set of all possible d’s

#d is a double such that the first entry is a multiplier and the second entry is for the presence of p (see convertD)

QS=[]

for a in range(0,2):

for b in range(0,1 + include_2_in_d):

for c in range(0,1 + include_3_in_d):

for d in range(0,2):

QS.append([ (-1)**a * (2)**b * (3)**c, d ])

return QS

def multiply(d1,d2): #this multiplies two d’s in the double form
16



return [squarefree(d1[0]*d2[0]), (d1[1] + d2[1])%2]

def convertD(d,p): #this converts a d in the double form to an integer

if d[1] == 0: return d[0]

if d[1] == 1: return d[0]*p

################# elimination for squares

def eliminateSquares(d1,d2,m,p):

D = m*p

d1 = convertD(d1,p)

d2 = convertD(d2,p)

for i in range(0,6):

if evaluateLemmas(permute(d1,-d2,D,i)):return 1

if evaluateLemmas(permute(d2,-d1*d2,3*D,i)):return 1

if lemma7(d1,d2,D): return 1

if lemma8(d1,d2,D): return 1

return 0

def permute(a,b,c,i):

if i==0: return [a,b,c]

if i==1: return [a,c,b]

if i==2: return [b,a,c]

if i==3: return [b,c,a]

if i==4: return [c,a,b]

if i==5: return [c,b,a]

def evaluateLemmas(X):

#these are the first six lemmas which apply to a*x1^2 + b*x2^2 + c*x0^2 = 0 such that gcd(x1,x2,x0)=1

[a,b,c] = X

if a*b>0 and b*c>0: return 1

if a%3 != 0 and a%3 == b%3 and c%9 in [3,6]: return 1

if a%9 in [3,6] and a%9 == b%9 and c%3 != 0: return 1

if a%4 in [1,3] and a%4 == b%4 and b%4 == c%4: return 1

if a%8 in [2,6] and a%8 == b%8 and b%8 == c%8: return 1

if a%8 in [2,6] and b%2 == 1 and c%2 == 1 and (b+c)%8 != 0 and (a+b+c)%8 != 0: return 1

return 0

def lemma7(d1,d2,D):

if not(D%8 in [2,6]):return 0

if d1%8 in [0,4]:return 0

17



if d2%8 in [0,4]:return 0

if d1%8 == d2%8 and d2%8 == 1: return 0

if d1%4 == (3*D)%4 and d2%4 == 1: return 0

if d2%8 == D%8: return 0

if d1%8 == (3*D + 1)%8 and d2%8 == 1: return 0

return 1

def lemma8(d1,d2,D):

if D%8 != 1: return 0

if d1%2 != 1: return 0

if d2%2 != 1: return 0

if [d1%8,d2%8] in [[1,1], [5,1], [3,5], [7,5]]: return 0

return 1

################# elimination for cubes

def eliminateCubes(d,m,p,equation):

D=m*p

divByP = d[1]

d = convertD(d,p)

if cubesRealSol(d,p,equation): return 1

if cubesModP(d,p,equation,divByP): return 1

if cubesMod3(d,p,equation): return 1

if cubesMod8(d,D,p,equation): return 1

return 0

def cubesRealSol(d,p,equation):

if d < 0 and equation==2: return 1

return 0

def cubesModP(d,p,equation,divByP):

if divByP==1:

if equation==1 and legendre(3,p) == -1: return 1

if equation==2 and legendre(-3,p) == -1: return 1

if divByP==0:

if equation==1 and legendre(d,p) == -1 and legendre(-3*d,p) == -1: return 1

if equation==2 and legendre(d,p) == -1 and legendre(3*d,p) == -1: return 1
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return 0

def cubesMod3(d,p,equation):

if d % 3 == 2: return 1

return 0

def cubesMod8(d,D,p,equation):

if D%2 == 0: Dbar = D / 2

else: return 0

if d%2 == 0:

dbar = d / 2

if equation==1 and (dbar - 18*Dbar - 27*Dbar*Dbar/dbar) % 8 in [0,2]: return 0

if equation==2 and (dbar + 9*Dbar + 27*Dbar*Dbar/dbar) % 8 in [0,2]:return 0

if d%2 != 0:

if equation==1: return 0

if d%8 == 1: return 0

if (d + 2*9*Dbar + 4*27*Dbar*Dbar/d)%8 == 1: return 0

if (27*Dbar*Dbar/d)%8 == 1: return 0

if (4*d + 2*9*Dbar + 27*Dbar*Dbar/d)%8 == 1: return 0

return 1

############## the two functions for computing the upper bounds for a given m and p

def computeBoundSquares(m,p):

Image = initializeTorsionImageSquares(m)

remaining = 0

for d1 in initializeDs(m,1,m%3==0):

for d2 in initializeDs(m,m%2==0,1):

eliminate = 0

for im in Image:

if eliminateSquares(multiply(d1,im[0]),multiply(d2,im[1]),m,p):

eliminate =1

if not( eliminate ):

remaining += 1

return floorLog2(remaining/4)
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def computeBoundCubes(m,p):

remaining1=0

remaining2=0

for d in initializeDs(m,m%2==0,1):

if not( eliminateCubes(d,m,p,1) or eliminateCubes(multiply(d,[-3,0]),m,p,1) ):

remaining1 += 1

for d in initializeDs(m,m%2==0,1):

if not( eliminateCubes(d,m,p,2) or eliminateCubes(multiply(d,[3,0]),m,p,2) ):

remaining2 += 1

return floorLog2(remaining1/2) + floorLog2(remaining2/2)

for conductor in [24,36]: # this is the function that prints the results

if conductor==36: print "\mathbb N\mathbb N\mathbb N"

print "For X0(%d):\mathbb N" %(conductor)

print "\t1\t2\t3\t6\t-1\t-2\t-3\t-6\mathbb N"

for p in [1,5,7,11,13,17,19,23]:

print "%d\t" %(p),

for m in [1,2,3,6,-1,-2,-3,-6]:

if conductor==24: upper = computeBoundSquares(m,p)

if conductor==36: upper = computeBoundCubes(m,p)

print "%d\t" %(upper),

print "\mathbb N"
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